MIL-STD-1760 DIGITAL LAUNCHER FOR NAVY/MARINE CORP 2.75-INCH ROCKET SYSTEM

Marine Aviation Situation

Marine Corp Helicopter Upgrade Program

- 4 Bladed Rotor
- Common Drive Train
- New Cockpit Avionics
- MIL-STD-1760 Weapons Communications

Current Navy/Marine Corp 2.75-Inch Rocket System

- 19 Tube LAU-61C/A
- 7 Tube LAU-68 D/A
 - Power is the only signal sent to launcher
 - Single or ripple fire
- 6 Basic Warhead Types
 - Point Detonating Fuzed Warheads
 - Pre-Set Time Delay Fuzed Warheads
 - 1 Motor Type

Marine Corp Rocket Situation

- New High Capability Attack Helicopter
- Limited Capability Rocket System
- Navy/Marine Corp Launcher limits Weapon System Capability
 - Remote Set Fuze Warheads not useable
 - Future guided rockets require communications
- NAVAIRSYSCOM Defense Suppression Systems - PMA-242
 - Initiates program to improve Rocket Launcher

Navy/MC 2.75-Inch Rocket Digitization Roadmap

Smart Launcher Concept of Operation

MIL-STD-1760 Mode

- Digital Two-Way Communications
 - Platform sends commands
 - Launcher responds
 - BIT Status
 - Rocket Inventory
 - Fuze set signal
 - Rocket Motor fire signal

5-Pin Mode

Launcher provides rocket motor fire signal

Smart Launcher Functional Diagram

RBFSS - Remove Before Flight Safety Switch EBA - Electronic Board Assembly

Smart Launcher Features

- Digital Electronic Board Assemblies
 - Conformally mounted in the LAU-61 Skin
- MIL-STD-1760 Connection
 - Forward of pylon interface
- 5-Pin Connector
 - Aft of pylon interface
- Warhead Fuzing Connection
 - Army Style Forward Bulkhead Connectors
- Remove Before Flight Safety Switch

Smart Launcher Physical Layout

Navy LAU-61 D/A

MIL-C-38999 Series III connector, Shell Size 25,

Polarization Key Identification N, in accordance with MIL-STD-1760

5-Pin Connector

Safety Switch

Smart Launcher 5-Pin Operating Modes

5-pin Mode

- Fires a single rocket for each trigger pull
- Predetermined order to maintain jettison weight balance
- No fuze setting capability

Smart Launcher 1760 Operating Features

Built In Test (BIT)

Provides operational status of launcher

Inventory Function

- Provides a list of rocket types loaded in launcher
- Must be input through maintenance equipment or platform
- Host platform deducts fired rockets from initial inventory

Smart Launcher 1760 Operating Features

Continuity Check

- Measures resistance of rocket motor igniter circuit
- Determines presence of fireable rockets
- Conducted
 - as part of inventory request
 - after each firing

Smart Launcher 1760 Operating Features

Warhead Fuzing

- Supports M439 and M433 Analog Time
 Delay Fuzes
 - upgradable to Digital Setting Protocols
- Aircraft Mission Computer calculates fuze set time
- Launcher generates fuze setting signal
- Each tube independently settable

Sequential Single Fire

- Each trigger pull
 - provides a Fuze Set Signal
 - fires one rocket
- Predetermined order
 - maintains jettison balance

Selective Single Fire

- Gunner selects tube to fire
- Each trigger pull
 - provides a Fuze Set Signal
 - fires one rocket
- Provides gunner with recommended tube selection to maintain jettison balance

Selective Ripple Fire

- Gunner selects tubes to fire
- Each trigger pull
 - provides Fuze Set Signals
 - fires all selected rockets
 - 60-100 millisecond delay between rockets
- Provides gunner with recommended tube selections to maintain jettison balance

Ripple All Fire

- Each trigger pull
 - provides Fuze Set Signals
 - fires all rockets in launcher
 - 60-100 millisecond delay between rockets

Demonstration

- Ground Launched rockets in April 2000
- Modified LAU-61 D/A
- Controlled by Laptop running MIL-STD-1553
 Aircraft Emulator
- Successfully demonstrated all Smart Launcher
 1760 Modes

Control Screen

7 Shot Ripple Firing at Yuma

Conclusions

- Digital control systems can be successfully integrated into legacy weapon systems.
- The addition of Digital Control to the Navy 2.75-Inch Rocket System will significantly upgrade it's capability
- In-Flight Demonstration of the Navy Smart launcher is planned for 2003